Optical constants of SnS2 (Tin disulfide)
Ermolaev et al. 2022: thin film; n 0.300–3.30 µm, k 0.300–0.629 µm
Complex refractive index (n+ik)
Derived optical constants
Conditions
film_thickness: 2.0E-8 substrate: SiO2 deposition_method: CVD
Comments
20 nm CVD SnS2.
References
G. A. Ermolaev, D. I. Yakubovsky, M. A. El-Sayed, M. K. Tatmyshevskiy, A. B. Mazitov, A. A. Popkova, I. M. Antropov, V. O. Bessonov, A. S. Slavich, G. I. Tselikov, I. A. Kruglov, S. M. Novikov, A. A. Vyshnevyy, A. A. Fedyanin, A. V. Arsenin, V. S. Volkov. Broadband optical constants and nonlinear properties of SnS2 and SnSe2. Nanomaterials 12, 141 (2022) (Numerical data kindly provided by Georgy Ermolaev)
Data
Additional information
About Tin disulfide
Tin disulfide (SnS2) is a layered material with a hexagonal crystal structure. It is an n-type semiconductor and exhibits a direct bandgap, making it of interest for optoelectronic applications. Due to its semiconducting nature, it has potential uses in photodetectors, solar cells, and field-effect transistors. Additionally, SnS2 has shown promise in the field of energy storage and can be employed as an anode material in lithium-ion batteries. The layered structure of SnS2 also means that it can be exfoliated into thin layers or nanosheets, similar to graphene, enabling its use in the growing field of two-dimensional materials for next-generation devices.
Other names and variations:- SnS2
- Tin(IV) sulfide
- Tin sulfide
- Stannic sulfide
- Mosaic gold
- Bis(sulfanylidene)tin