Optical constants of MoSe2 (Molybdenum diselenide)
Hsu et al. 2019: 3-layer (3L) film; n,k 0.40–0.86 µm
Wavelength:
µm
(0.39697–0.85697)
Complex refractive index (n+ik)
n
k
LogX
LogY
eV
Derived optical constants
Conditions & Spec sheet
n_is_absolute: true wavelength_is_vacuum: true film_thickness: 3L
Comments
3-layer (3L)
References
C. Hsu, R. Frisenda, R. Schmidt, A. Arora, S. M. de Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, A. Castellanos-Gomez. Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2, Adv. Optical Mater. 7, 1900239 (2019) (Numerical data kindly provided by Andres Castellanos-Gomez)
Data
INFO
Molybdenum diselenide, MoSe2
Molybdenum diselenide (MoSe2) is a layered compound similar in structure to molybdenum disulfide (MoS2). Each layer consists of a plane of molybdenum atoms sandwiched between two planes of selenium atoms. These layers are held together by weak van der Waals forces, allowing them to be easily exfoliated. In its bulk form, MoSe2 behaves as an indirect bandgap semiconductor. However, when reduced to a monolayer, its properties shift, and it becomes a direct bandgap semiconductor. This transition in electronic properties has attracted considerable interest in the fields of optoelectronics and nanotechnology. Potential applications include use in transistors, photodetectors, and other electronic or optoelectronic devices, especially when high-quality thin films or single layers are employed.Other names
- Molybdenum selenide
- Diselanylidenemolybdenum