RefractiveIndex.INFO

Refractive index database


nk database   |   n2 database   |   about

Shelf

Book

Page

Optical constants of GaAs (Gallium arsenide)
Papatryfonos et al. 2021: n,k 0.260–1.88 µm

Wavelength: µm
 (0.26049–1.87868)  
 

Complex refractive index (n+ik)[ i ]


n   k   LogX   LogY   eV

Derived optical constants

Conditions & Spec sheet

n_is_absolute: true
wavelength_is_vacuum: true

References

K. Papatryfonos, T. Angelova, A. Brimont, B. Reid, S. Guldin, P. R. Smith, M. Tang, K. Li, A. J. Seeds, H. Liu, D. R. Selviah. Refractive indices of MBE-grown AlxGa1-xAs ternary alloys in the transparent wavelength region, AIP Adv. 11, 025327 (2021) (Numerical data kindly provided by Konstantinos Papatryfonos)

Data

[CSV - comma separated]   [TXT - tab separated]   [Full database record]

INFO

Gallium arsenide, GaAs

Gallium arsenide (GaAs) is a compound semiconductor material that holds a prominent position in the world of optoelectronics and high-frequency electronics. With a direct bandgap of approximately 1.43 eV, GaAs is highly efficient for radiation recombination, making it ideal for a range of applications such as solar cells, lasers, and light-emitting diodes (LEDs). It offers superior electron mobility compared to silicon, which allows for faster electronic devices and is widely used in applications requiring high-frequency operation like in microwave and millimeter-wave technologies. GaAs is commonly grown using methods such as molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD). While it's more costly to produce than silicon, the material's superior electronic and optoelectronic properties often justify the additional expense in specialized applications.

Other name

  • Gallium(III) arsenide

External links