## Optical constants of AgGaS_{2} (Silver gallium sulfide, AGS)

Boyd et al. 1971: n(o) 0.49–12 µm

Wavelength:
µm

(0.49–12)

### Complex refractive index (*n+ik)*

n
k
LogX
LogY
eV

### Derived optical constants

### Dispersion formula

$$n^2-1=2.6280+\frac{2.1686λ^2}{λ^2-0.1003}+\frac{2.1753λ^2}{λ^2-950}$$### Comments

Ordinary ray (e)

### References

1) G. D. Boyd, H. Kasper, J. H McFee. Linear and nonlinear optical properties of AgGaS_{2}, CuGaS_{2}, and CuInS_{2}, and theory of the wedge technique for the measurement of nonlinear coefficients, *IEEE J. Quant. Electron.*, **7**, 563-573 (1971)

2) G. C. Bhar. Refractive index interpolation in phase-matching, *Appl. Opt.* **15**, 305-307 (1976)

*Ref. 2 provides a dispersion formula based on data from Ref. 1

### Data

## INFO

### Silver gallium sulfide, AgGaS_{2} (AGS)

AgGaS_{2}, commonly abbreviated as AGS, is a ternary chalcogenide compound that has gained considerable attention for its nonlinear optical properties. This material crystallizes in a tetragonal structure and possesses a wide transparency range, extending from the visible to the mid-infrared spectrum. AGS is particularly renowned for its high nonlinear optical coefficients, which make it an attractive material for frequency conversion processes like second-harmonic generation (SHG) and difference-frequency generation (DFG). Due to these attributes, AGS has been utilized in a range of optoelectronic applications, including optical parametric oscillators and tunable infrared lasers. Its nonlinear optical performance is highly anisotropic, meaning that the material's properties can vary depending on the crystallographic orientation, a factor that must be considered in device design and fabrication. Like many chalcogenides, AGS is sensitive to thermal and mechanical stress, requiring careful handling and environmental control. Overall, AgGaS

_{2}serves as a critical material in the realm of nonlinear optics, offering a unique combination of wide transparency and high nonlinear coefficients that continue to make it a subject of ongoing research and technological development.