RefractiveIndex.INFO

Refractive index database


nk database   |   n2 database   |   about

Shelf

Book

Page

Optical constants of SF10
J-SF10 (HIKARI)

Wavelength: µm
 (0.365–2.400)  
 

Complex refractive index (n+ik)[ i ]


n   k   LogX   LogY   eV

Derived optical constants

Dispersion formula

$$n^2=2.87916509-0.0119049122λ^{2}+0.0328054585λ^{-2}+0.00270047713λ^{-4}-0.000476826023λ^{-6}+0.000107927203λ^{-8}-1.07672748\text{×}10^{-05}λ^{-10}+5.00986227\text{×}10^{-07}λ^{-12}$$

Conditions & Spec sheet

n_is_absolute: false
wavelength_is_vacuum: false
temperature: 23.0 °C
thermal_dispersion:
  - type: "Schott formula"
    coefficients: -3.1113e-06 9.4527e-09 -1.239e-12 9.5871e-07 1.3886e-09 0.28226
nd: 1.728250
Vd: 28.378835
density: 3.06 g/cm3
thermal_expansion:
  - temperature_range: -30 70 °C
    coefficient: 8.9e-06 K-1
dPgF: 0.0101
phosphate_resistance: 1.0

References

NIKON Zemax catalog 2017-11 (obtained from http://www.nikon.com)
See also HIKARI glass data sheets

Data

[Expressions for n]   [CSV - comma separated]   [TXT - tab separated]   [Full database record]

INFO

Hikari Glass Co., Ltd.

Hikari Glass Co., Ltd. is a Japanese company specializing in the manufacturing of high-quality optical glass and optical components, and is a subsidiary of Nikon Corporation. Known for its precision engineering and strict quality control, Hikari serves various industries including consumer electronics, scientific research, and industrial optics. The company offers a wide range of specialized optical materials, including various types of crown and flint glasses, which are used in applications demanding high levels of optical clarity and performance. Hikari's products often find use in lenses, prisms, and other optical elements where precision and reliability are critical. With the backing of Nikon's renowned expertise in optics and imaging, Hikari has become a respected name in the field of optics, serving both domestic and international markets. Their expertise in crafting custom solutions for complex optical requirements has made them a preferred choice for organizations in need of specialized glass materials. As a testament to their commitment to quality, Hikari Glass Co., Ltd. is often sought after for projects requiring the highest levels of optical performance and integrity.

External links


SF10 optical glass

SF10 is a specialized type of optical glass known for its high refractive index and relatively high dispersion, as indicated by its low Abbe number. This combination of properties allows for significant bending and focusing of light, making it particularly useful in applications requiring compact optical assemblies. However, the high dispersion means that SF10 has a tendency to separate different wavelengths of light more than other glasses, potentially leading to chromatic aberration. To mitigate this, optical designers often pair SF10 with low-dispersion materials in complex lens systems, striving for optimal chromatic correction. SF10 is commonly used in high-quality photographic lenses, telescopic systems, and other high-performance optical applications where its unique attributes can be leveraged to enhance image quality. Though more costly than more commonly used optical glasses like BK7, SF10's particular optical characteristics make it an essential choice for demanding optical systems requiring exceptional performance.

SF10 and similar glasses produced by different makers

Maker Glass
Schott N-SF10
Hikari E-SF10
HOYA E-FD10
Sumita K-SFLD10
CDGM ZF4

Glass

Glass is a versatile, amorphous material that has been an essential component in optical technologies for centuries. Comprising mainly of silica along with various additives like soda, lime, or boron, glass can be engineered to exhibit a wide range of optical properties, such as refractive indices and dispersion characteristics. In the optical industry, specialized types of glass like crown, flint, and extra-low dispersion (ED) glasses are used for manufacturing lenses, prisms, and other optical elements. These glasses are precisely formulated to offer specific properties, such as low chromatic aberration or high light transmittance across different spectral ranges. Glass can also be coated with thin layers of materials like anti-reflective coatings to enhance its optical performance. More recently, advances in photonics and nanotechnology have led to the development of innovative glass types, such as photonic crystal and metamaterial glasses, which exhibit unique light-manipulating properties. It is crucial to note that the optical properties of glass, including its refractive index, can vary depending on its composition and temperature, making it important to consult specific data for particular applications. Overall, glass remains a foundational material in optics, its wide applicability owed to its tunable properties and general robustness.

External links