RefractiveIndex.INFO

Refractive index database


nk database   |   n2 database   |   about

Shelf

Book

Page

Optical constants of METALS
Aluminium (Al)

Wavelength: µm
 (6.1992e-02–2.4797e+02)  
 

Complex refractive index (n+ik)[ i ]


n   k   LogX   LogY   eV

Derived optical constants

Comments

Fit of experimental data from several sources to Brendel-Bormann (BB) model

References

A. D. Rakić, A. B. Djurišic, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271-5283 (1998)
[Calculation script (Python)]

Data

[CSV - comma separated]   [TXT - tab separated]   [Full database record]

INFO

Aluminium, Al

Aluminium (Al) is a lightweight and highly reflective metal that sees extensive use in a variety of optical applications. Known for its excellent thermal and electrical conductivity, aluminium is often utilized as a mirror coating in optical systems such as telescopes and microscopes, particularly for operations within the ultraviolet and visible spectral ranges. While it offers high reflectivity, it is also cost-effective, making it a popular choice across both consumer and industrial sectors. However, aluminium surfaces are generally more prone to oxidation than other reflective metals like gold or silver. To counteract this, aluminium coatings are frequently protected by a thin layer of dielectric material. In photonics, aluminium nanostructures are also being investigated for their plasmonic properties. It's worth noting that the optical properties of aluminium, such as its refractive index, can differ based on its physical state—whether in bulk, thin film, or nanoparticle form. Overall, aluminium remains a versatile and widely used material in the field of optics, valued for its blend of performance and affordability.

Other name

  • Aluminum

External links


Metals

Metals are integral to a wide array of optical technologies, offering unique properties like high reflectivity, excellent electrical and thermal conductivity, and robustness under various environmental conditions. Commonly used metals in optical applications include aluminum, silver, and gold, each with its distinct advantages and challenges. For example, aluminum is prized for its cost-effectiveness and high reflectivity in the UV and visible ranges, while gold is favored for its stability and performance in the infrared spectrum. Metals are often used as thin-film coatings on mirrors, beam splitters, and various optical components to enhance reflectivity, filter wavelengths, or provide protective layers. In recent years, the study of metal nanostructures has opened up the field of plasmonics, enabling extraordinary optical phenomena like sub-wavelength focusing and surface-enhanced Raman scattering. However, it's important to note that metals are generally opaque and exhibit high losses for transmitted light, limiting their use to reflective or surface-based applications. Additionally, their optical properties can be influenced by factors like surface roughness, layer thickness, and oxidation state, necessitating precise control during manufacturing and usage. Despite these challenges, metals remain a cornerstone in the design of optical systems, offering a combination of durability, performance, and versatility that is difficult to achieve with other types of materials.

External links